Related Content

Thank you!


On behalf of our dedicated team, we thank you for your continued support. It's fulfilling to see so many people using Voovers to find solutions to their problems. Thanks again and we look forward to continue helping you along your journey!




Nikkolas and Alex
Founders and Owners of Voovers

Volume of a Hexagonal Prism

Lesson Contents

Hexagonal Prism Volume Formula

The formula for volume of a hexagonal prism is given as:
V = 3√32a2h
Where V is the volume, a is the hexagon base’s edge length, and h is the height of the prism.

volume of a hexagonal prism

What is a Hexagonal Prism?

A hexagonal prism is the three-dimensional shape that is created from extending the face of a hexagon upwards into the third dimension. Since a hexagon is two dimensional, it becomes a prism once it extends upwards into the third dimension.

The difference between a hexagonal prism and a rectangular prism is the shape of the cross section. The cross section of a prism is what we see if we cut the prism on a plane that is parallel to its base plane. It will appear as the shape that the base of the prism is made of, which is a hexagon in the case of a hexagonal prism, and a rectangle in the case of a rectangular prism.

Example Problem

Find the volume of a hexagonal prism with a base edge length of 20 and a prism height of 10.
Solution:
1.) We have all values needed to use the volume formula directly. Let’s plug the given dimensions into the volume formula.
2.) V = 3√32a2h
V = 3√32(202)(10) = 10,392.3
3.) The volume of the hexagonal prism is 10,392.3.

Scroll to Top